Discrete Spectrum of Electromagnetic Dirac Operators
نویسندگان
چکیده
We consider the Dirac operators with electromagnetic fields on 2-dimensional Euclidean space. We offer the sufficient conditions for electromagnetic fields that the associated Dirac operator has only discrete spectrum.
منابع مشابه
The essential spectrum of Schrödinger operators on lattices
The paper is devoted to the study of the essential spectrum of discrete Schrödinger operators on the lattice Z by means of the limit operators method. This method has been applied by one of the authors to describe the essential spectrum of (continuous) electromagnetic Schrödinger operators, square-root Klein-Gordon operators, and Dirac operators under quite weak assumptions on the behavior of t...
متن کاملOn the Spectral Properties of Dirac Operators with Electrostatic Δ-shell Interactions
In this paper the spectral properties of Dirac operators Aη with electrostatic δ-shell interactions of constant strength η supported on compact smooth surfaces in R3 are studied. Making use of boundary triple techniques a Krein type resolvent formula and a Birman-Schwinger principle are obtained. With the help of these tools some spectral, scattering, and asymptotic properties of Aη are investi...
متن کاملEigenvalue Asymptotics of Perturbed Periodic Dirac Systems in the Slow-decay Limit
A perturbation decaying to 0 at ∞ and not too irregular at 0 introduces at most a discrete set of eigenvalues into the spectral gaps of a one-dimensional Dirac operator on the half-line. We show that the number of these eigenvalues in a compact subset of a gap in the essential spectrum is given by a quasi-semiclassical asymptotic formula in the slow-decay limit, which for power-decaying perturb...
متن کاملMagnetic Schrödinger operators with discrete spectra on non-compact Kähler manifolds
We identify a class of magnetic Schrödinger operators on Kähler manifolds which exhibit pure point spectrum. To this end we embed the Schrödinger problem into a Dirac-type problem via a parallel spinor and use a Bochner-Weitzenböck argument to prove our spectral discreteness criterion.
متن کاملNon-commutative Bloch Theory
For differential operators which are invariant under the action of an abelian group Bloch theory is the preferred tool to analyze spectral properties. By shedding some new non-commutative light on this we motivate the introduction of a non-commutative Bloch theory for elliptic operators on Hilbert C-modules. It relates properties of C-algebras to spectral properties of module operators such as ...
متن کامل